If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(H)=-16H^2+56H+10
We move all terms to the left:
(H)-(-16H^2+56H+10)=0
We get rid of parentheses
16H^2-56H+H-10=0
We add all the numbers together, and all the variables
16H^2-55H-10=0
a = 16; b = -55; c = -10;
Δ = b2-4ac
Δ = -552-4·16·(-10)
Δ = 3665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$H_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-55)-\sqrt{3665}}{2*16}=\frac{55-\sqrt{3665}}{32} $$H_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-55)+\sqrt{3665}}{2*16}=\frac{55+\sqrt{3665}}{32} $
| 90=(2x-2)(x+5) | | 4x16x-1=22x | | 14-n÷2=13 | | 13=n-14÷2 | | -5x+1.5+0.25=21 | | -9(w+2)=2w+48 | | -24y=0 | | a+a-8+4a-32=26 | | x+2/3+4=7 | | 2w-5(w+9)=-14 | | X+3x-x/3=22 | | 2q+5+q+25°=180° | | -2+3a=4 | | -32/x=6 | | 2q+5q+25°=180° | | x/2+30=180 | | 8x-5(x-2)=20 | | (7x+3)+(7x+23)=180 | | 5x+25=15+6x | | (7x-27)=(3x+29) | | 20-(2y/3)=4 | | 34(2a−6)+1/2=2/5(3a+20) | | x^2-15x-84=0 | | -(n+)=12 | | (6x+1)+(8x-23)=90 | | 12n+18=5n+39 | | 12n+18=5n+36 | | (x+4)+55=90 | | n-23/4=31/2 | | 2(4m−5)=4m+2 | | c=49÷c | | 85÷3.14=r |